Main output file

The JOYCE standard output file is usually named as
\fbox{joyce.\textit{$<$label$>$}.out}
where joyce.$ <$label$ >$.inp it is the user defined name of the related input file. This file contains printouts and detailed information about all operations performed by the JOYCE code during the parameterization procedure. The verbosity level of the printouts is set by the value assigned to the $print keyword in the joyce.molname.inp file. Because of the many information it contains, the output file cannot be described in much detail in this manual. Only some of the most important sample sections will here be illustrated. A careful reading of the output log file is highly recommended to JOYCE new users.

In the following a short explanation of the most important sections of the output file is given.

===============================================
           JOYCE  Parameterization starts    
  ===============================================
 
  ---------------
     A)  Scanning input file
  ---------------
 
        input file ok
 
  Frequency plot required: joyce.but_freqchk.agr
  Torsions plot required:    but_torschk  
 
  Title: | Butane - Step 2 |
 
 
 
  ---------------
     B) Reading QM training data
  ---------------
 
  QM INPUT FILE for geom-0 (QM):  ../../QMdata/opt+freq.fcc
 
  ============ reading FCC data ===========
   title: Butane opt geom + freq
   n.atoms ...........................    14
   E(tot) ............................  -158.45877100
In the above frame, the first two sections of the joyce.molname.out log file are reported. In section $ A)$, JOYCE3.0 scans the input file and checks its validity. Thereafter, prints some info on the required plot files (if any) and on the project title. In the second section, JOYCE prints some information retrieved from the QM database (here in $ .fcc$ format). In particular, the QM reference energy ($ E_0$) appearing in equation (35) is recovered and printed (E(tot)). From the QM optimized geometry JOYCE3.0 also recovers the connection table of the target molecule T. It reconstructs the molecular connectivity from the atomic covalent radii implemented in the code and the related bond orders. Note that this information can be printed in the output by increasing the print level through the print key.
In the same section, as reported in the frame below, JOYCE3.0 recovers, based on the  bond orders computed for the optimized geometry, all intramolecular coordinates (bonds, angles and dihedrals), called natural IC or NIC,  printing their labels (according to the atom names found in the QM database) and equilibrium values.
====== INTERN COORD analysis:  NATURAL-ICs: style=FF  ======
          TYPE     NAME            EQUIL.VALUE
                                   Angs or deg
             1  distance  C1-C2                     1.5302       1   2
             2  distance  C2-C3                     1.5325       2   3
                    [...]
            19  angle     C1-C2-H9               109.5439       1   2   9
            20  angle     C2-C3-C4               113.3938       2   3   4
                    [...]
            38  dihedral  C1-C2-C3-C4            -179.9998       1   2   3   4
                     [...]
            64  dihedral  H11-C3-C4-H14          -178.0147      11   3   4  14
 
In the last columns, the numbers (which refer to the atom order found in .fcc file) of the atoms involved in the definition of each NIC are also indicated. All the recovered NIC are printed in the generated.IC.txt output file (see subsection 6.2).

In the third section, JOYCE3.0's output shows instead the set of ICs defined in the  GROMACS topology file, are printed together with their equilibrium value (computed from the QM optimized geometry), as shown in the following.

---------------
      C) Reading FF & IC definition
    ---------------
 
 
    Gromacs input file ..........: but.step2.top
 
    1) Atom Types
    Site  Name       Charge        Mass        Sigma        Epsilon
     1     C1         0.000       12.011        0.350        0.276
     2     C2         0.000       12.011        0.350        0.276
     3     H1         0.000        1.008        0.250        0.126
     4     H2         0.000        1.008        0.250        0.126
 
 
     2) Stretching parameters
 
     Bond      Atoms            k_s        r0   FF term     Atoms
     1     C1    C2          2254.51    1.530    1        1    2
     2     C2    C2          2130.51    1.533    2        2    3
                       [...]
    13     C1    H1          3100.08    1.104   13        4   14
 
 
    3) Bending parameters
 
    Angle       Atoms          k_b     theta0   FF term       Atoms
    1    C1   C2   C2      710.63  113.390     14        1    2    3
    2    C2   C1   H1      346.67  111.620     15        2    1    5
             [...]
    22    H1   C1   H1      313.34  107.580     35       12    4   13
    23    H1   C1   H1      313.34  107.580     36       12    4   14
    24    H1   C1   H1      313.34  107.330    37       13    4   14
4.2) Fourier torsions
 
    Dihedral        Atoms      Ncos   K_d     n    gamma   FF term     Atoms
    1      C1  C2  C2  C1   5    0.0000   0     0.00     38     1   2   3   4
                                 0.0000   1    0.00      39
                                 0.0000   2     0.00     40
                                 0.0000   3     0.00     41
                                 0.0000   4     0.00     42
    2      H1  C1  C2  C2   1    0.0000   3     0.00     43     5   1   2   3
    3      H1  C1  C2  C2   1    0.0000   3     0.00     44     6   1   2   3
    4      H1  C1  C2  C2   1    0.0000   3     0.00     45     7   1   2   3
    5      C2  C2  C1  H1   1    0.0000   3     0.00     46     2   3   4  12
    6      C2  C2  C1  H1   1    0.0000   3     0.00     47     2   3   4  13
    7      C2  C2  C1  H1   1    0.0000   3     0.00     48     2   3   4  14
 
    The following functions keep the R0/Ang0/Gamma values as given in FF file
    38   C1-C2-C2-C1_n=0
    39   C1-C2-C2-C1_n=1
    40   C1-C2-C2-C1_n=2
    41   C1-C2-C2-C1_n=3
    42   C1-C2-C2-C1_n=4
    43   H1-C1-C2-C2_n=3
    44   H1-C1-C2-C2_n=3
    45   H1-C1-C2-C2_n=3
    46   H1-C1-C2-C2_n=3
    47   H1-C1-C2-C2_n=3
    48   H1-C1-C2-C2_n=3


If the $keepff keyword is activated, a list of the selected IC equilibrium values (constrained to the value read from the topology file) is also given at this point, as shown above. It is important to stress once again that the set of IC defining the FF and effectively employed during the parameterization is the one read from the GROMACS  topology file. This set can be arbitrarily chosen by the user, depending on the characteristics of the target molecule T (as illustrated in section 7.1.2 and Figure 6), and the number of IC that compose it can exceed 3N-6, N being the number of atoms of the molecule. For these reason, as mentioned in section 7.1.2, the IC selected in the topology file are named as redundant IC (RIC).

Once the RIC set has been defined the parameterization procedure starts. First of all, JOYCE3.0 associates a model function to each RIC, as assigned in the topology file. Thereafter, the program starts retrieving information from the QM training database, concretely by considering T's optimize geometry and Hessian matrix. From such info, QM vibrational modes and frequency are analyzed in terms of the defined RICS, and the results printed as follows:

---------------
   D) Working with the QM Hessian
   ---------------
 
   INCREMENT Alpha, Beta matrices for ABSOLUTE MINIMUM GEOMETRY
   Energy weight ......................    0.0000
   Gradient weights ...................    0.0000
   diag Hessian weights ............... 5000.0000
   off-diag Hessian weights ........... 2500.0000
   further freq dep. weight for Hessian   -1.0000
 
 

=====================================================
        N O R M A L   V I B R A T I O N A L   M O D E S
                           GEOMETRY 0  
    =====================================================
 
    Compute the Mass weighted Hessian
    Diagonalize the Mass weighted Hessian
    Eigenvalues of the (M-1/2)*F*M(-1/2) matrix (mH)GEOMETRY 0
    1 0.3141E-03   2 0.1080E-02   3 0.1377E-02   4 0.1490E-02   5 0.3745E-01
    6 0.1143E-01   7 0.1360E-01   8 0.1482E-01   9 0.1895E-01  10 0.1980E-01
    11 0.2179E-01  12 0.2396E-01  13 0.2809E-01  14 0.2975E-01  15 0.3388E-01
    16 0.3566E-01  17 0.3623E-01  18 0.3996E-01  19 0.4058E-01  20 0.4063E-01
    21 0.4425E-01  22 0.4444E-01  23 0.4478E-01  24 0.4489E-01  25 0.4537E-01
    26 0.4577E-01  27 0.1871      28 0.1879      29 0.1893      30 0.1895
    31 0.1899      32 0.1927      33 0.1978      34 0.1983      35 0.1989
    36 0.1990
 
              Frequencies in 1/cm   GEOMETRY 0
     1   123.003   2   228.124   3   257.531   4   267.883   5   424.756
     6   741.881   7   809.383   8   844.930   9   955.322    10   976.484
    11  1024.469  12  1074.392  13  1163.236  14  1197.042    15  1277.571
    16  1310.553  17  1320.966  18  1387.318  19  1398.026    20  1399.016
    21  1459.989  22  1463.041  23  1468.742  24  1470.551    25  1478.275
    26  1484.835  27  3002.068  28  3008.730  29  3019.914    30  3021.358
    31  3024.177  32  3046.798  33  3087.033  34  3090.517    35  3095.316
    36  3096.069

JOYCE recovers the Cartesian Hessian matrix from the QM optimized geometry and computes mass weighted Hessian, normal modes and frequencies according to equations (27)-(30). Note that translation and rotations are not considered. As shown in the above frame, it prints all the information gained, numbering the frequencies (and the corresponding normal modes) from the lowest to the highest. For each normal mode, JOYCE3.0 computes its projection over the set of selected RIC, printing them in a matrix form, where each column contains the coefficients of the normal mode corresponding to the reported frequency projected over the RIC. Each row contains up to 10 columns. In the example framed here below, we show how this simple analysis gives a quick snapshot on how the vibrations distribute themselves over the RIC. As could be expected, the lowest frequencies involve many RIC, essentially dihedrals, whereas high frequency ones are more localized in stretching or bending RIC. It is crucial to stress here that such analysis gives hints about which IC should be considered as flexible (and as such represented through periodic functions) or stiff (to be accounted for via harmonic potentials).

VIBRATIONAL NORMAL MODES: Int.Coord. displac.s GEOMETRY 0
 
                  123.2  228.4  257.7  267.9  424.7 ...  
                    1      2      3      4      5   ...
   1 C1-C2        0.000  0.000  0.003  0.000 -0.021 ...  
   2 C2-C2        0.000  0.000  0.000  0.000 -0.019 ...  
   3 C2-C1        0.000  0.000 -0.003  0.000 -0.021 ...  
  14 C1-C2-C2     0.000  0.000 -0.064  0.000 -0.051 ...  
  15 C2-C2-C1     0.000  0.000  0.064  0.000 -0.051 ...  
  16 C2-C1-H      0.000  0.000  0.017  0.000  0.024 ...  
                                  [...]
  38 C1-C2-C2-C1 -0.207  0.043  0.000  0.000  0.000 ...  
  39 H-C1-C2-C2  -0.039 -0.177  0.000 -0.197  0.000 ...  
  40 C2-C2-C1-H  -0.039 -0.177  0.000  0.197  0.000 ...  
  41 C1-C1       0.000  0.000  0.000  0.000 -0.159 ...  
  42 H-C1        0.169 -0.044 -0.173  0.002 -0.119 ...  
  43 H-C1       -0.169  0.044 -0.173 -0.002 -0.119 ...  
 
                                  [...]
 
                 3024.1 3046.8 3087.0 3090.5 3095.4 3096.1
                   31     32     33     34     35     36
   4 C1-H         0.000  0.000  0.000  0.000 -0.265 -0.279
   5 C1-H         0.040  0.088 -0.273 -0.290  0.108  0.118
   6 C1-H        -0.040 -0.088  0.273  0.290  0.107  0.118
   7 C1-H         0.000  0.000  0.000  0.000 -0.263  0.281
   8 C1-H        -0.040  0.088  0.273 -0.290  0.107 -0.119
   9 C1-H         0.040 -0.088 -0.273  0.290  0.107 -0.119
  10 C2-H        -0.234 -0.238 -0.046 -0.108 -0.015 -0.022
  11 C2-H         0.234  0.238  0.046  0.108 -0.015 -0.022
  12 C2-H        -0.234  0.238 -0.046  0.108 -0.015  0.022
  13 C2-H         0.234 -0.238  0.046 -0.108 -0.015  0.022
  16 C2-C1-H      0.000  0.000  0.000  0.000  0.013  0.014
  17 C2-C1-H     -0.010 -0.014  0.013  0.012 -0.007 -0.007
  18 C2-C1-H      0.010  0.014 -0.013 -0.012 -0.007 -0.007
  19 H-C1-H      -0.002 -0.003  0.012  0.014  0.006  0.006
  20 H-C1-H       0.002  0.003 -0.012 -0.014  0.006  0.006
 
 
                      End Normal Modes Calculation
                      Computed Alpha,Beta for HESSIAN points    1  666
                      Computed  666  new points for geom:
                      ABSOLUTE MINIMUM GEOMETRY

If flexible ICs are present, and a QM relaxed scan is given to JOYCE in the $ geoms$ section of the input file, the code starts a loop on all given geometries, printing the results in section $ E)$ of the output file. All scanned geometries go through the following operations:

  1. i) Cartesian coordinates and the total energy are read for each geometry from the QM database
  2. ii)  FIRA is applied to the current geometry by performing a rigid rotation of the scanned dihedral, starting from the fully optimized geometries and displacing the chosen dihedral to the value computed from the QM current constrained optimization.  
  3. iii) The QM relaxed energy read from the training database is associated with the new geometry obtained through FIRA.

The following analysis is only performed on geometries other than the absolute minimum, thus it will only be activated if an energy scan has been performed on some selected RIC.

  ----------------
    E) Working with relaxed QM scans
    ----------------
 
    ========================================
                GEOMETRY n.  1
    ========================================
    QM input file: ../../QMdata/Scan1/butane.delta_000.fcc
 
    ============ reading FCC data =========== title: State file generated from file: butane.delta_000.fchk (format: fchk) n.atoms ...........................    14 E(tot) ............................  -158.44960700
    Hessian not found on file fcc E(tot) - E(reference geom) ........    24.06008200
 
    The geometry is changed according to the FROZEN options
    1. the follow. RICs are obtained by the current QM geom 2. the reference geom is changed accordingly and the obtained geom is used in the follow
 

RIC    -- atoms --     current    refer   change
    1      1   2   3   4      -0.000 -180.000  180.000
 
    WARNING: the following RICs are changed too much
         FrozGeo   RelaxGe    change                     allowed
    14   113.394   116.838    -3.444      1   2   3   0   3.000   1.148
    20   113.394   116.838    -3.444      2   3   4   0   3.000   1.148
 
    --- GEOMETRY from frozen changes (angstrom) ---
                  x           y           z       Nucl.ch 1  C1     -0.4740072  -2.1583107   0.0012238     3.2
    2  C2      1.0561133  -2.1764456   0.0021622     3.2
    3  C3      1.6478863  -3.5900924  -0.0001270     3.2
    4  C4      0.5869913  -4.6928581  -0.0028806     3.2
    5  H5     -0.8678333  -1.1289935   0.0029178     0.5
                               [...]
 

As an example, in the above frame is reported the information printed by JOYCE, concerning the first of the n-butane non equilibrium geometries (given in the $scan section). In this geometry, the carbon backbone dihedral was displaced to 0$ ^{\circ}$ , i.e. in a cis conformation, but similar information is printed in the output for all other scanned geometries. In the first block, information about the QM level of theory is printed, together with the computed absolute energy and the energy difference (E(scf) - E(reference geom) in kJ/mol) with the absolute minimum (geometry 0 in the $ trans$ conformation). In this case the latter is $ \sim$ 24 kJ/mol. Next, the scanned RIC is specified together with some information about the employed FIRA approximation, explained in some detail in section 7.2.5. If the value of any RIC, other than the scanned one, results to be much different in the current scanned geometry with respect of the reference (absolute minimum) one, JOYCE gives a warning and prints the difference between the two values. Particular attention should be paid to this info in case an atom pair interacting through nonbonded interactions appears in this list. If so, please resort to the $ LJassign$ keyword as detailed in Section 5.1. In the previous frame, for example, RICs number 14 and 20, i.e. the bending angles the two Carbon atoms triplets (1,2,3 and 2,3,4)  change together with the scanned dihedral, passing from $ \sim$ 113$ ^{\circ}$ (in the trans minimum energy reference geometry) to $ \sim$ 117$ ^{\circ}$ (in the current cis conformation). Finally, the geometry created through the FIRA and effectively employed in the parameterization is printed for reference.

When the loop on all geometries is over, JOYCE3.0  starts the QMD-FF parameterization, solving the system of equations to find the best linear parameters as reported in equations (35)-(45). The results are summarized in section F) of the output as follows.

----------------
    F) QMD-FF parameterization
    ----------------
 
    =================================================
    S O L V E   T H E   L I N E A R   S Y S T E M
    F O R   T H E   B E S T   P A R A M E T E R S
    =================================================
 
    n. of parameters ..............   48
    n. of points ..................  680
 
 
    ------ read dependences ------
   1          param  44   =   param  43  *    1.0000
   2          param  45   =   param  43  *    1.0000
   3          param  46   =   param  43  *    1.0000
   4          param  47   =   param  43  *    1.0000
   5          param  48   =   param  43  *    1.0000
 
 
   ---- read assigned parameters ----
   ---- Expected input units:    ----
   ---- [L] =A ; [E] = kJ/mol    ----
   - all nonbonded prms have been assigned -  
 
        ---- Expected input units:    ----
        ---- [L] =A ; [E] = kJ/mol    ----
 
        1   param   1   =      0.24046    input =  2254.5152
        2   param   2   =      0.22723    input =  2130.5117
        3   param   3   =      0.24046    input =  2254.5152
                           [...]
       35   param  35   =      0.11934    input =   313.3363
       36   param  36   =      0.11934    input =   313.3363
       37   param  37   =      0.11934    input =   313.3363
 

First, JOYCE looks whether assigned parameters or dependencies were given in the input, through the $assign or $dependencies commands. If so, all read assignments are printed out, as shown in the frame below. Please note that the parameter number always refers to the order given in the topology file, where the RIC spanning the FF are defined. The linear system is solved using the Single Value Decomposition (SVD) algorithm, [1] after JOYCE has constructed $ \alpha$ and $ \beta$ matrices (see section 7.2.3) from the information reported in all above frames, considering the imposed constraints and/or dependencies.
Further details about the numerical procedure are also printed by the program, as shown in the next frame. After the number of free parameters has been written, the effective threshold (as set in the $zero environment in the input file) and the eigenvalues consequently discarded are reported in some detail, which can be increased by setting the proper print level through the $ print$ keyword.
Number of free parameters .........    6
given threshold for null eigenvalues ....    0.100D-11 * Max(eigenvalue)
maximum value of the A matrix ...........   0.357D+01
both A and B are multiplied by ..........   0.100D+01
sum (over points) of the weights ........   0.100D+02
first kept metric eigenvalues from    43
7.749D-02  1.081D-01  1.081D-01  3.691D-01  1.773D+00
 
 
metric eigensolution n.  42   0.000000
0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00
0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00
                   [...]0.00   0.00   0.00   0.00   0.00   0.00   0.00   1.00
 
metric eigensolution n.  43  0.7749045E-01
0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00
0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00
                    [...]
0.00   0.00   0.00   0.00   0.00   0.00   0.00  -0.76   0.27   0.37
0.27   0.37   0.00   0.00   0.00   0.00   0.00   0.00
 
Max err in the matrix inversion     1.00
for the matrix element               1    1
 

Due to the empirical nature of this threshold, it is requisite, at least in the preliminary runs, to check if the selected values is adequate to discard only the null eigenvalues. To aid this task, as appears in the above frame, JOYCE prints the first discarded eigenvalue and the first one kept.

As displayed in the next frame, JOYCE3.0 prints a summary of the best parameters final values (both in atomic and standard units), specifying if the constants was assigned, dependent or free to vary. In the latter case the program also computes and writes a "sensitivity index" (which is set to zero in the former cases), that gives some indication whether the selected RIC is connected to the scanned one.

==== VALUE OF THE BEST LINEAR PARAMETERS ====
          # param.s   48        #. of free param.s   11
          sensitivity index:    =1 OK,  =0 useless function
          -----------------------
 
          #    value     Sens Index
          1   0.240460      0.000   C1-C2
          2   0.227234      0.000   C2-C2
          3   0.240460      0.000   C1-C2
          4   0.330646      0.000   C1-H1
          5   0.330646      0.000   C1-H1 6   0.330646      0.000   C1-H1 7   0.319339      0.000   C2-H2
8   0.319339      0.000   C2-H2
    9   0.319339      0.000   C2-H2
                 [...]
   13   0.330646      0.000   C1-H1
   14   0.270664      0.000   C1-C2-C2
   15   0.132040      0.000   C2-C1-H1
                 [...]
   37   0.119343      0.000   H1-C1-H1
   38  -0.000750      1.000   C1-C2-C2-C1_n=0
   39   0.001676      1.000   C1-C2-C2-C1_n=1
   40   0.000672      1.000   C1-C2-C2-C1_n=2
   41   0.002879      1.000   C1-C2-C2-C1_n=3
   42   0.000059      1.000   C1-C2-C2-C1_n=4
   43   0.000820      1.000   H1-C1-C2-C2_n=3
                 [...]
   48   0.000820      1.000   H1-C1-C2-C2_n=3
   TOTAL STANDARD DEVIATION 0.189D-04   atomic units  

Once they have been determined, all the best parameters (i.e. force constants and equilibrium coordinates) are also printed in a output topology file. This file is named by default joyce.new.top, and as already mentioned is directly printed in the GROMACS  .top format. This file is the main JOYCE  output and it can be used by the GROMACS engine[18] to start a MD simulation on the target molecule. When the fitting procedure is ended, the above mentioned information is also printed in the JOYCE output as follows:  
RESULTS OF THE LINEAR FITTING (kJ/mol L=angst)
 
     exact    computed   residue    Chisq
1    0.0029    0.0034   -0.0004   0.00000   hes 0  1  1    0.0271
2    0.0000    0.0002   -0.0002   0.00000   hes 0  2  1    0.0135
3    0.0101    0.0113   -0.0011   0.00000   hes 0  2  2    0.0271
4    0.0000    0.0000   -0.0000   0.00000   hes 0  3  1    0.0135
5    0.0000   -0.0000    0.0000   0.00000   hes 0  3  2    0.0135
                           [...]665    0.0000   -0.0000    0.0000   0.00018   hes 0 36 35    0.0135
666    1.8658    1.8734   -0.0076   0.00018   hes 0 36 36    0.0271
667   24.0601   23.8180    0.2420   0.00039   Energy- 1      0.0360
668   14.1016   14.5547   -0.4532   0.00113   Energy- 2      0.0360
669    3.9908    3.6221    0.3687   0.00162   Energy- 3      0.0360
670    8.0787    8.3319   -0.2533   0.00185   Energy- 4      0.0360
671   14.4770   14.3392    0.1378   0.00192   Energy- 5      0.0360
                   [...]
679    6.1122    6.3630   -0.2508   0.00258   Energy-13      0.0360
680    0.0026   -0.0972    0.0998   0.00262   Energy-14      0.0360
 
TOTAL STANDARD DEVIATION 5.118D-02  kJ/mol L=angst
 

The above frame shows the results obtained for the n-butane molecule, where the standard deviation  with respect to JOYCE's objective function (35) is reported together with a detailed list of the fitting results. With respect to the notation of equation (35), the point number is reported in the first column, while in the sixth and seventh column the point type (energy, gradient or Hessian) and the $ g$ geometry in which is computed  are reported. In the next two columns (8$ ^{th}$ and 9$ ^{th}$) the $ K$,$ L$ components are specified, while the given weights ($ W_g$, $ W_{Kg}^{\prime}$ and $ W_{KLg}^{\prime\prime}$) are shown in the last column in their normalized value. The second to the fifth column report respectively the QM (exact) energy (or gradient or Hessian), its FF value (computed), the difference (residue) between the formers and the partial mean square deviation (Chisq). Note that, starting form the JOYCE3.0 release, these results can also be saved in the graphical $ .agr$ format. Futher information can be found at the JOYCE website.[13]

After the fitting procedure is complete, the program computes the QMD-FF mass weighted Hessian matrix, its eigenvalues and the resulting frequencies  based on the optimized force constants and the selected RIC. Next, it prints the data obtained according to the same format previuoly employed for the QM Hessian and frequencies, as appears from the next frame.

=====================================================
    N O R M A L   V I B R A T I O N A L   M O D E S
    by the optim. FF (EQUIL GEOMETRY)
    =====================================================
 
    Compute the Mass weighted Hessian
    Diagonalize the Mass weighted Hessian
 
 
    Eigenvalues of the (M-1/2)*F*M(-1/2) matrix (mH) by the optim. FF (EQUIL GEOMETRY)
    1 0.2312E-03     2 0.1031E-02     3 0.1271E-02     4 0.2473E-02     5 0.3947E-02
    6 0.1045E-01     7 0.1399E-01     8 0.1449E-01     9 0.1664E-01    10 0.1793E-01
    11 0.1916E-01    12 0.1943E-01    13 0.2167E-01    14 0.2414E-01    15 0.3255E-01
    16 0.3306E-01    17 0.3905E-01    18 0.4184E-01    19 0.4193E-01    20 0.4245E-01
    21 0.4384E-01    22 0.4401E-01    23 0.4416E-01    24 0.4603E-01    25 0.4683E-01
    26 0.5164E-01    27 0.1851        28 0.1861       29 0.1870        30 0.1873
    31 0.1932        32 0.1938        33 0.2005        34 0.2006        35 0.2006
    36 0.2007
 

Frequencies in 1/cm   by the optim. FF (EQUIL GEOMETRY)
    1   105.525     2   222.870     3   247.413     4   345.160     5   436.034
    6   709.555     7   820.973     8   835.406     9   895.274    10   929.307
    11   960.774    12   967.534    13  1021.706    14  1078.266    15  1252.237
    16  1261.962    17  1371.433    18  1419.699    19  1421.226    20  1429.891
    21  1453.150    22  1455.915    23  1458.527    24  1489.027    25  1501.971
    26  1577.162    27  2986.119    28  2993.868    29  3001.550    30  3004.034
    31  3050.301    32  3055.482    33  3107.927    34  3108.391    35  3108.760
    36  3109.380

Similarly to the QM normal analysis carried out in the previous sections, the QMD-FF normal modes projection over the RICS is printed in the same format used for their QM counterparts, as briefly shown in the next frame.

VIBRATIONAL NORMAL MODES: Int.Coord. displac.s by the optim. FF (EQUIL GEOMETRY)
 
               105.5   222.9   247.4   345.2   436.0  ...
                 1       2       3       4       5    ...
  1 C1-C2      0.000   0.000   0.000   0.003  -0.033  ...
  2 C2-C2      0.000   0.000   0.000   0.000  -0.037  ...
  3 C2-C1      0.000   0.000   0.000  -0.003  -0.033  ...
 14 C1-C2-C2   0.000   0.000   0.000  -0.066  -0.043  ...
 15 C2-C2-C1   0.000   0.000   0.000   0.066  -0.043  ...
 16 C2-C1-H1   0.000   0.000   0.000   0.016   0.003  ...
                                                 [...]
 
               3050.3  3055.5  3107.9  3108.4  3108.8  3109.4
                31      32      33      34      35      36
  4 C1-H1      0.000   0.000   0.000   0.000  -0.383   0.036
  5 C1-H1     -0.012   0.010  -0.392  -0.101   0.193  -0.018
  6 C1-H1      0.012  -0.010   0.392   0.101   0.193  -0.018
  7 C1-H1      0.000   0.000   0.000   0.000   0.039   0.357
  8 C1-H1     -0.008  -0.009   0.110  -0.360  -0.019  -0.179
  9 C1-H1      0.008   0.009  -0.110   0.360  -0.019  -0.179

 

Finally, a brief comparison between QM and FF computed vibrational frequencies is printed, as shown in the next frame. It is worth noticing that the indicated standard deviation is only for comparison purposes, as the fitting target is the minimization of equation (35). Note also that the comparison between QM and FF frequencies is done on the base of the overlap of the corresponding normal modes (QM and FF), and not on the nearest value of the frequency itself.

=================================================
              Compare Norm Modes from QM and FF  
        =================================================
 
        iFF Freq/FF   ig03 freq/g03      overl    err   
        35   3108.8    36   3096.1       0.765    12.6  
        36   3109.4    35   3095.4       0.764    14.0  
        34   3108.4    34   3090.5       0.806    17.9  
        33   3107.9    33   3087.0       0.851    20.9  
        31   3050.3    32   3046.8       0.922     3.5  
        32   3055.5    31   3024.1       0.975    31.4  
        30   3004.0    30   3021.4       0.847   -17.3  
        29   3001.5    29   3019.9       0.866   -18.4  
        27   2986.1    28   3008.7       0.913   -22.6  
        28   2993.9    27   3002.0       0.910    -8.1  
        23   1458.5    26   1484.8       0.656   -26.3  
        18   1419.7    25   1478.3       0.668   -58.6  
        21   1453.2    24   1470.6       0.983   -17.4  
        22   1455.9    23   1468.8       0.991   -12.9  
        19   1421.2    22   1463.1       0.674   -41.8  
        24   1489.0    21   1459.9       0.842    29.1  
        25   1502.0    20   1399.0       0.686   102.9  
        
26   1577.2    19   1398.0       0.779   179.2  
        20   1429.9    18   1387.4       0.693    42.5  
        15   1252.2    17   1320.7       0.947   -68.5  
        17   1371.4    16   1310.5       0.934    60.9  
        16   1262.0    15   1277.5       0.852   -15.5  
        13   1021.7    14   1197.1       0.986  -175.4  
        14   1078.3    13   1163.3       0.977   -85.0  
        10    929.3    12   1074.5       0.925  -145.2  
         9    895.3    11   1024.4       0.794  -129.2  
        11    960.8    10    976.4       0.785   -15.7  
        12    967.5     9    955.1       0.888    12.5  
         7    821.0     8    844.8       0.923   -23.9  
         8    835.4     7    809.4       0.967    26.0  
         6    709.6     6    741.8       0.984   -32.2  
         5    436.0     5    424.7       0.978    11.3  
         3    247.4     4    267.9       0.995   -20.5  
         4    345.2     3    257.7       1.000    87.4  
         2    222.9     2    228.4       0.991    -5.5  
         1    105.5     1    123.2       0.998   -17.7  
 
                  Standard deviation (cm-1)       64.68
 

Note that if the $gracefreq keyword has been activated in the input file, the above results are also printed in an output file in the $ .agr$ format for a straightforward visualization. Eventually, if the fitting was successfully performed, JOYCE log file should always end with a NORMAL EXIT sentence.