Introduction

The total energy ($ E_{tot}$) of a system of $ M_{mol}$ molecules in classical simulation is usually [5,6] computed as a sum of two contributions, namely

$\displaystyle E_{tot} = E_{inter} + E_{intra}^{M_{mol}}$     (1)

where $ E_{inter}$ and $ E_{intra}^{M_{mol}}$ are the interaction energy among different molecules and the sum of the internal energy of each molecule. In standard FFs, $ E_{inter}$ is computed as a sum of pairwise contributions among all the $ N_{sites}$ interaction sites used to model the system. In particular,
$\displaystyle E_{inter} = E_{LJ} + E_{Coul}$     (2)

where the long-range electrostatic term is
$\displaystyle E_{Coul} = \sum^{N_{sites}}_{i=1} \sum^{N_{sites}}_{j=1}
\frac{q_iq_j}{r_{ij}}$     (3)

whereas the short range 12-6 Lennard-Jones term is
$\displaystyle E_{LJ} = \sum^{N_{sites}}_{i=1} \sum^{N_{sites}}_{j=1}
4 \epsilon...
...} {r_{ij} } \bigg )^{12} -
\bigg(\frac{ \sigma_{ij} } {r_{ij} } \bigg)^6 \bigg]$     (4)

where $ i$ and $ j$ are interaction sites belonging to a pair of different molecules.

The total intramolecular term $ E_{intra}^{M_{mol}}$ is the sum of the molecular internal energies ($ E^{intra}$) of all the $ {M_{mol}}$ molecules composing the system, i.e.

$\displaystyle E_{intra}^{M_{mol}} = \sum^{M_{mol}}_{K=1} V^{intra}_K$     (5)

where $ V^{intra}_K$ is the internal energy of molecule $ K$.
Given a model potential function $ V^{intra}_K$, the main goal of the JOYCE program is to find, with respect of reference QM computed data, the best parameters to represent the intramolecular energy for a chosen target molecule $ K$, hence parameterizing the intra-molecular term of a QMD-FF..